Parameter-Free Spectral Kernel Learning

نویسندگان

  • Qi Mao
  • Ivor W. Tsang
چکیده

Due to the growing ubiquity of unlabeled data, learning with unlabeled data is attracting increasing attention in machine learning. In this paper, we propose a novel semi-supervised kernel learning method which can seamlessly combine manifold structure of unlabeled data and Regularized Least-Squares (RLS) to learn a new kernel. Interestingly, the new kernel matrix can be obtained analytically with the use of spectral decomposition of graph Laplacian matrix. Hence, the proposed algorithm does not require any numerical optimization solvers. Moreover, by maximizing kernel target alignment on labeled data, we can also learn model parameters automatically with a closed-form solution. For a given graph Laplacian matrix, our proposed method does not need to tune any model parameter including the tradeoff parameter in RLS and the balance parameter for unlabeled data. Extensive experiments on ten benchmark datasets show that our proposed two-stage parameter-free spectral kernel learning algorithm can obtain comparable performance with fine-tuned manifold regularization methods in transductive setting, and outperform multiple kernel learning in supervised setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning the kernel matrix by resampling

In this abstract paper, we introduce a new kernel learning method by a nonparametric density estimator. The estimator consists of a group of k-centroids clusterings. Each clustering randomly selects data points with randomly selected features as its centroids, and learns a one-hot encoder by one-nearest-neighbor optimization. The estimator generates a sparse representation for each data point. ...

متن کامل

Reduced-Set Kernel Principal Components Analysis for Improving the Training and Execution Speed of Kernel Machines

This paper 1 presents a practical, and theoretically well-founded, approach to improve the speed of kernel manifold learning algorithms relying on spectral decomposition. Utilizing recent insights in kernel smoothing and learning with integral operators, we propose Reduced Set KPCA (RSKPCA), which also suggests an easy-to-implement method to remove or replace samples with minimal effect on the ...

متن کامل

Parametrized Accelerated Methods Free of Condition Number

Analyses of accelerated (momentum-based) gradient descent usually assume bounded condition number to obtain exponential convergence rates. However, in many real problems, e.g., kernel methods or deep neural networks, the condition number, even locally, can be unbounded, unknown or mis-estimated. This poses problems in both implementing and analyzing accelerated algorithms. In this paper, we add...

متن کامل

Some Properties of the Gaussian Kernel for One Class Learning

This paper proposes a novel approach for directly tuning the gaussian kernel matrix for one class learning. The popular gaussian kernel includes a free parameter, σ, that requires tuning typically performed through validation. The value of this parameter impacts model performance significantly. This paper explores an automated method for tuning this kernel based upon a hill climbing optimizatio...

متن کامل

Reduced Set KPCA for Improving the Training and Execution Speed of Kernel Machines

This paper presents a practical, and theoretically wellfounded, approach to improve the speed of kernel manifold learning algorithms relying on spectral decomposition. Utilizing recent insights in kernel smoothing and learning with integral operators, we propose Reduced Set KPCA (RSKPCA), which also suggests an easy-toimplement method to remove or replace samples with minimal effect on the empi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010